login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Permutation of natural numbers: a(1) = 1, a(n) = A246278(A055396(n), a(A078898(n))).
40

%I #24 Apr 05 2018 20:32:54

%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,27,22,23,24,25,26,

%T 21,28,29,30,31,32,45,34,35,36,37,38,33,40,41,54,43,44,81,46,47,48,49,

%U 50,75,52,53,42,125,56,63,58,59,60,61,62,39,64,55,90,67,68,135,70,71,72,73,74,51,76,77,66,79,80,99,82,83

%N Permutation of natural numbers: a(1) = 1, a(n) = A246278(A055396(n), a(A078898(n))).

%H Antti Karttunen, <a href="/A250246/b250246.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%F a(1) = 1, a(n) = A246278(A055396(n), a(A078898(n))).

%F a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A003961(a(A250470(2n+1))). - _Antti Karttunen_, Jan 18 2015 - Instead of A250470, one may use A268674 in above formula. - _Antti Karttunen_, Apr 01 2018

%F As a composition of related permutations:

%F a(n) = A163511(A252756(n)).

%F Other identities. For all n >= 1:

%F a(n) = a(2n)/2. [The even bisection halved gives the sequence back.]

%F A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].

%F A001221(a(n)) = A302041(n).

%F A001222(a(n)) = A253557(n).

%F A008683(a(n)) = A302050(n).

%F A000005(a(n)) = A302051(n)

%F A010052(a(n)) = A302052(n), for n >= 1.

%F A056239(a(n)) = A302039(n).

%o (PARI)

%o up_to = 16384;

%o ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };

%o A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639

%o A055396(n) = if(1==n,0,primepi(A020639(n)));

%o v078898 = ordinal_transform(vector(up_to,n,A020639(n)));

%o A078898(n) = v078898[n];

%o A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961

%o A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k))); \\ _Antti Karttunen_, Apr 01 2018

%o (Scheme, with memoizing-macro definec from _Antti Karttunen_'s IntSeq-library, three alternative definitions)

%o (definec (A250246 n) (cond ((<= n 1) n) (else (A246278bi (A055396 n) (A250246 (A078898 n)))))) ;; Code for A246278bi given in A246278

%o (definec (A250246 n) (cond ((<= n 1) n) ((even? n) (* 2 (A250246 (/ n 2)))) (else (A003961 (A250246 (A250470 n))))))

%o (define (A250246 n) (A163511 (A252756 n)))

%Y Inverse: A250245.

%Y Other similar permutations: A250243, A250248, A250250, A163511, A252756.

%Y Cf. A003961, A005843, A020639, A055396, A078898, A246278, A250470, A268674, A278524, A302042, A302046.

%Y Differs from the "vanilla version" A249818 for the first time at n=42, where a(42) = 54, while A249818(42) = 42.

%Y Differs from A250250 for the first time at n=73, where a(73) = 73, while A250250(73) = 103.

%K nonn

%O 1,2

%A _Antti Karttunen_, Nov 17 2014