Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:46:10
%S 7453,8905,9937,10069,14089,15757,16737,17889,18977,19869,20329
%N Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to SmallGroup(729,95).
%C For the discriminants d in A250239, the 3-class field tower of K=Q(sqrt(-3),sqrt(d)) has exactly two stages and the second 3-class group G of K is given by the metabelian 3-group G=SmallGroup(729,95) with transfer kernel type a.1, (0,0,0,0), transfer target type [(9,27),(3,3)^3] and coclass 1. This is the first excited state on the coclass-1 graph.
%C The reason the 3-class field tower of K must stop at the second Hilbert 3-class field is Blackburn's Theorem on two-generated 3-groups G whose commutator subgroup G' also has two generators. In fact, the group G=SmallGroup(729,95) has commutator subgroup G'=(9,9), two-generated.
%D H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
%H N. Blackburn, <a href="http://dx.doi.org/10.1017/S0305004100031959">On prime-power groups in which the derived group has two generators</a>, Proc. Camb. Phil. Soc. 53 (1957), 19-27.
%H D. C. Mayer, <a href="http://www.worldscientific.com/doi/abs/10.1142/S179304211250025X">The second p-class group of a number field</a>, Int. J. Number Theory 8 (2) (2012), 471-505.
%H D. C. Mayer, <a href="http://arxiv.org/abs/1403.3899">The second p-class group of a number field</a>. Preprint: arXiv:1403.3899v1 [math.NT], 2014.
%H D. C. Mayer, <a href="http://arxiv.org/abs/1403.3839">Principalization algorithm via class group structure</a>, Preprint: arXiv:1403.3839v1 [math.NT], 2014. J. Théor. Nombres Bordeaux 26 (2014), no. 2, 415-464.
%o (Magma) SetClassGroupBounds("GRH"); for n := 7453 to 20000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R, E); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo<C|x`subgroup> : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]), NumberField(a[2])); else H := Compositum(NumberField(a[1]), NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([9, 9] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
%Y A006832, A250235, A250236 are supersequences.
%Y A250237, A250238, A250240, A250241, A250242 are disjoint sequences.
%K hard,more,nonn
%O 1,1
%A _Daniel Constantin Mayer_, Nov 16 2014