%I #4 Nov 11 2014 12:39:16
%S 442,11519,117828,706561,3032302,10361063,30011560,76692849,177624322,
%T 380016703,761591084,1444917201,2616462070,4551355783,7645002704,
%U 12452793505,19739306442,30538524991,46226743444,68609982305
%N Number of length 5+5 0..n arrays with every six consecutive terms having the maximum of some two terms equal to the minimum of the remaining four terms
%C Row 5 of A250081
%H R. H. Hardin, <a href="/A250086/b250086.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/63)*n^9 + (121/84)*n^8 + (108/7)*n^7 + (166/3)*n^6 + (469/5)*n^5 + (1199/12)*n^4 + (5753/63)*n^3 + (2659/42)*n^2 + (2146/105)*n + 1
%e Some solutions for n=3
%e ..2....0....0....2....1....1....0....2....2....1....2....2....0....3....1....3
%e ..3....2....1....3....3....2....1....0....0....0....2....2....2....0....2....0
%e ..0....1....3....0....2....2....3....3....1....0....2....0....0....3....0....3
%e ..0....1....1....1....2....3....2....0....3....3....2....3....0....1....2....0
%e ..0....1....1....0....2....1....1....0....2....0....3....1....3....3....0....0
%e ..0....3....1....0....3....1....3....2....1....3....3....1....0....1....0....0
%e ..1....1....2....0....1....1....1....0....2....1....3....1....0....1....0....3
%e ..0....1....0....0....3....1....1....0....1....0....0....1....2....1....3....2
%e ..1....1....3....2....3....1....2....3....1....0....2....0....1....2....3....0
%e ..2....1....2....3....2....1....0....2....1....0....2....1....0....0....2....3
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 11 2014