login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250083
Number of length 2+5 0..n arrays with every six consecutive terms having the maximum of some two terms equal to the minimum of the remaining four terms.
1
83, 982, 5604, 21405, 63611, 159278, 352192, 708609, 1323835, 2329646, 3902548, 6272877, 9734739, 14656790, 21493856, 30799393, 43238787, 59603494, 80826020, 107995741, 142375563, 185419422, 238790624, 304381025, 384331051, 481050558
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (7/6)*n^6 + (28/3)*n^5 + (245/12)*n^4 + (47/2)*n^3 + (227/12)*n^2 + (26/3)*n + 1.
Conjectures from Colin Barker, Nov 11 2018: (Start)
G.f.: x*(83 + 401*x + 473*x^2 - 106*x^3 - 5*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=6:
..4....4....1....2....4....0....4....4....2....1....4....3....1....4....4....0
..0....2....6....4....0....5....6....6....1....2....6....4....5....0....0....3
..0....1....2....6....2....2....4....5....3....5....1....1....5....0....3....5
..0....0....4....6....2....3....0....3....2....2....1....3....2....6....3....2
..3....3....2....1....2....2....5....1....5....5....1....1....4....0....5....2
..6....1....5....2....5....3....4....3....2....5....4....1....2....2....5....2
..3....3....0....2....3....0....4....6....4....0....2....4....2....4....3....1
CROSSREFS
Row 2 of A250081.
Sequence in context: A112766 A128950 A068851 * A292284 A195893 A233332
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2014
STATUS
approved