%I #15 Nov 28 2014 22:26:14
%S 0,0,0,0,0,0,4,20,86,336,1273,4880,19938,90662,486753,3285964,
%T 29643278,373908194,6739368109,173801125420,6356254132640,
%U 326203515419552,23294352975946580,2301176047756537128,313285408199163993419,58638266023262469408284
%N Number of inequivalent binary linear codes of length n minus 2^n.
%C The numbers of inequivalent binary linear codes of length n (A076766) start like the powers of two (A000079). This sequence is their difference. These are the row sums of the triangle A250002.
%F a(n) = A076766(n) - A000079(n).
%e There are 342 inequivalent binary linear codes of length 8, and 2^8 = 256, hence a(8) = 342 - 256 = 86.
%Y Cf. A076766, A000079, A250002.
%K nonn
%O 0,7
%A _Tilman Piesk_, Nov 10 2014