login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/((1-x)*(1+3*x)*(1-4*x)).
4

%I #12 Jul 22 2022 01:27:30

%S 1,2,15,40,221,702,3355,11780,52041,193402,817895,3138720,12953461,

%T 50618102,206059635,813476860,3286192481,13047914802,52482224575,

%U 209057202200,838843897101,3347530323502,13413657088715,53584020970740,214547906035321,857556157684202

%N Expansion of 1/((1-x)*(1+3*x)*(1-4*x)).

%H G. C. Greubel, <a href="/A249997/b249997.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,11,-12).

%F G.f.: 1/((1-x) * (1+3*x) * (1-4*x)).

%F a(n) = (-1)^n*3^(n+2)/28 + 4^(n+2)/21 -1/12. - _R. J. Mathar_, Jan 09 2015

%F E.g.f.: (1/84)*(27*exp(-3*x) - 7*exp(x) + 64*exp(4*x)). - _G. C. Greubel_, Jul 21 2022

%t LinearRecurrence[{2,11,-12}, {1,2,15}, 50] (* _G. C. Greubel_, Jul 21 2022 *)

%o (Magma) [((-1)^n*3^(n+3) +4^(n+3) -7)/84: n in [0..50]]; // _G. C. Greubel_, Jul 21 2022

%o (SageMath) [((-1)^n*3^(n+3) +4^(n+3) -7)/84 for n in (0..50)] # _G. C. Greubel_, Jul 21 2022

%Y Cf. A016208, A099621, A249998, A249999.

%K nonn,easy

%O 0,2

%A _Alex Ratushnyak_, Dec 28 2014