login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249986
Number of length 6+1 0..2*n arrays with the sum of the absolute values of adjacent differences equal to 6*n.
1
466, 7138, 43068, 168506, 508902, 1290856, 2886016, 5862924, 11046810, 19587334, 33034276, 53421174, 83356910, 126125244, 185792296, 267321976, 376699362, 521062026, 708839308, 949899538, 1255705206, 1639476080, 2116360272
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1987/180)*n^6 + (2033/30)*n^5 + (2785/18)*n^4 + 226*n^3 - (3017/180)*n^2 + (697/30)*n.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: 2*x*(233 + 1938*x + 1444*x^2 + 309*x^3 + 134*x^4 - 84*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=4:
..5....0....0....5....2....4....2....5....2....0....0....3....0....0....1....5
..2....5....7....0....8....7....4....0....1....1....3....0....2....2....7....1
..0....0....1....6....6....1....0....7....7....6....6....8....7....0....2....5
..8....0....3....8....1....6....6....8....0....8....4....8....1....4....0....2
..0....4....4....8....5....0....0....5....3....2....8....1....3....6....0....5
..2....8....8....0....7....3....5....0....5....6....1....7....6....0....7....8
..3....2....4....3....2....2....4....3....0....0....6....7....0....8....3....1
CROSSREFS
Row 6 of A249982.
Sequence in context: A069399 A145637 A051987 * A373135 A273808 A034593
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 10 2014
STATUS
approved