Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Apr 18 2022 09:47:05
%S 2,25,256,256036,2560361612769,256036161276932002260000001,
%T 256036161276932002260000001607597862784080913990785121
%N a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 2.
%C a(12) has 1717 digits. - _Michael S. Branicky_, Feb 25 2021
%H Michael S. Branicky, <a href="/A249893/b249893.txt">Table of n, a(n) for n = 1..11</a> (terms 1..10 from Hiroaki Yamanouchi)
%o (PARI) a(n)=k=n;s=1;while(s<5*10^7,if(s%10,if(s^2\(10^(#Str(s^2)-#Str(k)))==k,print1(s^2,", ");k=s^2));s++)
%o a(2)
%o (Python)
%o def f(x):
%o ..print(x,end=', ')
%o ..n = x
%o ..s = 1
%o ..while s < 10**7:
%o ....if s % 10:
%o ......S = str(s**2)
%o ......if S.startswith(str(n)):
%o ........print(s**2,end=', ')
%o ........n = s**2
%o ....s += 1
%o f(2)
%o (Python)
%o from math import isqrt
%o def anext(an):
%o lo, hi = an*10, an*10 + 9
%o while True:
%o found = False
%o if isqrt(hi)**2 > lo: return (isqrt(lo)+1)**2
%o lo, hi = lo*10, hi*10 + 9
%o n, an = 1, 2
%o for n in range(2, 17):
%o an = anext(an)
%o print(n, an) # _Michael S. Branicky_, Feb 25 2021
%Y Cf. A048559, A048561.
%K nonn,base
%O 1,1
%A _Derek Orr_, Nov 08 2014