Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 13 2014 00:27:08
%S 16,65,91,1514,1993,1994,2452,2722,3047,3214,3931,3957,4356,4366,5191,
%T 5581,5805,5806,7519,8871,9228,9752,10036,10037,10039,10040,10963,
%U 10964,11278,11279,12015,12281,12595,12665,13262,13618,13648,15102,15103,18529,18991
%N Numbers n such that A084937(3n) > A084937(3n+1).
%H N. J. A. Sloane, <a href="/A249689/b249689.txt">Table of n, a(n) for n = 1..641</a> (Based on _John P. Linderman_'s computation of a million terms of A084937)
%o (AWK, using a-file for A084937)
%o awk ' BEGIN {s = 0}
%o NR%3 == 0 { s = $2 }
%o NR%3 == 1 { t = $2
%o if (s > t)
%o print( (NR-1)/3 )
%o } ' a084937.txt | awk '{ print NR, $1}' >b249689.txt
%o (Python)
%o from __future__ import division
%o from fractions import gcd
%o A249689_list, l1, l2, s, b = [], 2, 1, 3, set()
%o for n in range(3,10**4):
%o ....i = s
%o ....while True:
%o ........if not i in b and gcd(i,l1) == 1 and gcd(i,l2) == 1:
%o ............l2, l1 = l1, i
%o ............b.add(i)
%o ............if l2 > l1 and n % 3 == 1:
%o ................A249689_list.append((n-1)//3)
%o ............while s in b:
%o ................b.remove(s)
%o ................s += 1
%o ............break
%o ........i += 1 # _Chai Wah Wu_, Dec 12 2014
%Y Cf. A084937
%K nonn
%O 1,1
%A _N. J. A. Sloane_, Nov 12 2014