login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length n+4 0..6 arrays with every five consecutive terms having four times some element equal to the sum of the remaining four
1

%I #4 Nov 03 2014 09:54:04

%S 2077,2589,3221,3981,4877,5917,7709,9957,12707,16005,19897,26589,

%T 35003,45331,57773,72537,98073,130311,169993,217901,274857,373909,

%U 499355,654105,841221,1063917,1452913,1946663,2556733,3295241,4174857,5716733

%N Number of length n+4 0..6 arrays with every five consecutive terms having four times some element equal to the sum of the remaining four

%C Column 6 of A249656

%H R. H. Hardin, <a href="/A249654/b249654.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +22*a(n-5) -22*a(n-6) -208*a(n-10) +208*a(n-11) +1108*a(n-15) -1108*a(n-16) -3672*a(n-20) +3672*a(n-21) +7922*a(n-25) -7922*a(n-26) -11388*a(n-30) +11388*a(n-31) +11046*a(n-35) -11046*a(n-36) -7181*a(n-40) +7181*a(n-41) +2915*a(n-45) -2915*a(n-46) -560*a(n-50) +560*a(n-51) -61*a(n-55) +61*a(n-56) +54*a(n-60) -54*a(n-61) -8*a(n-65) +8*a(n-66)

%e Some solutions for n=6

%e ..0....5....0....4....1....5....4....6....1....1....4....2....2....3....3....2

%e ..6....5....1....6....5....1....6....0....3....0....5....0....4....2....1....1

%e ..2....0....6....5....5....2....1....6....4....1....1....1....6....1....3....0

%e ..1....6....5....5....4....2....4....0....6....2....5....1....0....6....1....1

%e ..1....4....3....5....5....0....5....3....1....6....5....6....3....3....2....6

%e ..0....5....0....4....6....0....4....6....6....1....4....2....2....3....3....2

%e ..1....5....1....6....0....6....6....0....3....0....5....0....4....2....1....1

%e ..2....0....6....0....5....2....6....6....4....1....6....1....1....1....3....0

%e ..1....6....5....5....4....2....4....0....1....2....5....1....5....6....6....1

%e ..1....4....3....5....5....0....0....3....6....1....0....1....3....3....2....6

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 03 2014