login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of 2*H(n)-H(n*(n+1)), a sequence the limit of which is gamma, the Euler-Mascheroni constant, where H(n) is the n-th harmonic number.
2

%I #14 Sep 08 2022 08:46:10

%S 2,20,27720,5173168,2329089562800,2844937529085600,

%T 54749786241679275146400,1874681189225708508850515710400,

%U 718766754945489455304472257065075294400,153803387341307877636928566091115101174034840640

%N Denominators of 2*H(n)-H(n*(n+1)), a sequence the limit of which is gamma, the Euler-Mascheroni constant, where H(n) is the n-th harmonic number.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5 Euler-Mascheroni constant, p. 28.

%D J. J. Mačys, "A new problem," American Mathematical Monthly, (Jan 2012), vol. 119, no. 1, p. 82.

%H G. C. Greubel, <a href="/A249646/b249646.txt">Table of n, a(n) for n = 1..47</a>

%H StackExchange, <a href="http://math.stackexchange.com/questions/605354">Question on Macys formula for Euler-Mascheroni constant gamma</a>, Dec 13 2013.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/Euler-MascheroniConstant.html">Euler-Mascheroni Constant</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant">Euler-Mascheroni constant</a>

%e Sequence of fractions begins 1/2, 11/20, 15619/27720, 2943155/5173168, 1331492839973/2329089562800, ...

%t Table[2*HarmonicNumber[n] - HarmonicNumber[n*(n + 1)] // Denominator, {n, 1, 10}]

%o (PARI) {a(n) = 2*sum(k=1,n, 1/k) - sum(k=1,n*(n+1), 1/k)};

%o for(n=1,15, print1(denominator(a(n)), ", ")) \\ _G. C. Greubel_, Sep 04 2018

%o (Magma) [Denominator(2*HarmonicNumber(n) - HarmonicNumber(n*(n + 1))): n in [1..15]]; // _G. C. Greubel_, Sep 04 2018

%Y Cf. A001008, A001620, A002805, A189048, A189049, A249645 (numerators).

%K nonn,frac

%O 1,1

%A _Jean-François Alcover_, Nov 03 2014