login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249531 Number of length 1+5 0..n arrays with no six consecutive terms having five times any element equal to the sum of the remaining five 1
62, 606, 3492, 13580, 40950, 104562, 235196, 480912, 911490, 1625210, 2754672, 4474896, 7011302, 10648350, 15739200, 22716332, 32101806, 44520162, 60709580, 81535980, 108006522, 141284426, 182704032, 233787120, 296259530, 372068862 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Row 1 of A249530

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..101

FORMULA

Empirical: a(n) = 4*a(n-1) -6*a(n-2) +5*a(n-3) -4*a(n-4) +3*a(n-5) -2*a(n-6) +2*a(n-7) -2*a(n-9) +2*a(n-10) -3*a(n-11) +4*a(n-12) -5*a(n-13) +6*a(n-14) -4*a(n-15) +a(n-16)

Also a degree 6 polynomial plus a degree 0 quasipolynomial with period 60, the first 12 being:

Empirical for n mod 60 = 0: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n

Empirical for n mod 60 = 1: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (547/60)

Empirical for n mod 60 = 2: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (124/15)

Empirical for n mod 60 = 3: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (183/20)

Empirical for n mod 60 = 4: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (472/15)

Empirical for n mod 60 = 5: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (425/12)

Empirical for n mod 60 = 6: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (156/5)

Empirical for n mod 60 = 7: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (821/60)

Empirical for n mod 60 = 8: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (344/15)

Empirical for n mod 60 = 9: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n - (879/20)

Empirical for n mod 60 = 10: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (80/3)

Empirical for n mod 60 = 11: a(n) = n^6 + (24/5)*n^5 + (51/4)*n^4 + (49/3)*n^3 + 13*n^2 + 5*n + (1547/60)

EXAMPLE

Some solutions for n=6

..5....0....2....3....3....4....5....1....4....5....0....0....2....3....4....0

..2....4....5....1....1....6....1....5....4....4....2....4....5....5....1....2

..0....5....1....0....2....3....1....3....6....2....1....4....4....3....6....3

..1....3....0....4....5....2....1....2....2....6....1....4....1....0....2....1

..0....3....2....0....2....4....3....5....1....6....6....0....3....0....4....5

..0....1....3....6....1....3....6....1....6....2....6....0....4....3....2....6

CROSSREFS

Sequence in context: A209906 A069473 A249530 * A069966 A290285 A286212

Adjacent sequences:  A249528 A249529 A249530 * A249532 A249533 A249534

KEYWORD

nonn

AUTHOR

R. H. Hardin, Oct 31 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 08:00 EDT 2022. Contains 353852 sequences. (Running on oeis4.)