login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the expected product of two sides of a random Gaussian triangle (in two dimensions).
6

%I #26 Nov 26 2020 11:03:24

%S 3,3,4,1,2,2,3,3,0,5,1,3,8,8,1,4,5,5,7,5,3,2,3,7,5,5,8,1,2,6,5,0,4,9,

%T 0,5,9,8,5,0,2,4,5,6,6,8,0,9,7,2,9,4,2,7,5,8,2,3,2,4,0,0,9,9,1,2,3,1,

%U 4,6,3,5,4,7,6,1,6,4,2,4,0,2,0,0,6,4,7,7,6,6,2,0,2,9,0,9,9,5,5,3,2,2,6,5

%N Decimal expansion of the expected product of two sides of a random Gaussian triangle (in two dimensions).

%C Coordinates are independent normally distributed random variables with mean 0 and variance 1.

%H G. C. Greubel, <a href="/A249491/b249491.txt">Table of n, a(n) for n = 1..5000</a>

%H S. R. Finch, <a href="/A102519/a102519.pdf">Random Triangles</a>, Jan 21 2010. [Cached copy, with permission of the author]

%H Eric Weisstein MathWorld, <a href="http://mathworld.wolfram.com/GaussianTrianglePicking.html">Gaussian Triangle Picking</a>

%F p = 4*E(1/4) - sqrt(3)*K(-1/3), where E is the complete elliptic integral and K the complete elliptic integral of the first kind.

%F Equals A093728/2. - _Altug Alkan_, Oct 02 2018

%e 3.341223305138814557532375581265049059850245668...

%p Re(evalf(4*EllipticE(1/2)-sqrt(3)*EllipticK(I/sqrt(3)), 120)); # _Vaclav Kotesovec_, Apr 22 2015

%t ek[x_] := EllipticK[x^2/(-1 + x^2)]/Sqrt[1 - x^2]; ee[x_] := EllipticE[x^2]; p = 4*ee[1/2] - (3/2)*ek[1/2]; (* or *) p = 4*EllipticE[1/4] - Sqrt[3]*EllipticK[-1/3]; RealDigits[p, 10, 104] // First

%t RealDigits[ N[ EllipticE[-8], 102]][[1]] (* _Altug Alkan_, Oct 02 2018 *)

%t RealDigits[3 EllipticE[8/9], 10, 102][[1]] (* _Jan Mangaldan_, Nov 24 2020 *)

%o (PARI) magm(a,b)=my(eps=10^-(default(realprecision)-5), c); while(abs(a-b)>eps, my(z=sqrt((a-c)*(b-c))); [a,b,c] = [(a+b)/2,c+z,c-z]); (a+b)/2

%o E(x)=Pi/2/agm(1,sqrt(1-x))*magm(1,1-x)

%o K(x)=Pi/2/agm(1,sqrt(1-x))

%o 4*E(1/4) - sqrt(3)*K(-1/3) \\ _Charles R Greathouse IV_, Aug 02 2018

%Y Cf. A093728, A102519, A102520, A102556, A102557, A102558, A102559.

%K nonn,cons,easy

%O 1,1

%A _Jean-François Alcover_, Oct 30 2014