login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of length n+4 0..k arrays with no five consecutive terms having four times any element equal to the sum of the remaining four
13

%I #6 Dec 12 2014 20:45:46

%S 30,190,58,860,464,112,2640,2948,1140,216,6730,11260,10124,2802,416,

%T 14730,35322,48180,34832,6872,802,29060,91160,185982,206428,119932,

%U 16800,1546,52900,207760,565516,980718,884728,412972,41084,2980,90390,429364

%N T(n,k)=Number of length n+4 0..k arrays with no five consecutive terms having four times any element equal to the sum of the remaining four

%C Table starts

%C ....30....190......860.......2640........6730........14730.........29060

%C ....58....464.....2948......11260.......35322........91160........207760

%C ...112...1140....10124......48180......185982.......565516.......1488294

%C ...216...2802....34832.....206428......980718......3512232......10671554

%C ...416...6872...119932.....884728.....5174842.....21824440......76550058

%C ...802..16800...412972....3791504....27309702....135637752.....549183692

%C ..1546..41084..1422232...16249428...144140836....843025344....3940066010

%C ..2980.100590..4898776...69646680...760833398...5239822940...28268238072

%C ..5744.246378.16874830..298527530..4016197550..32568952752..202814997034

%C .11072.603406.58131580.1279613894.21200828116.202440565098.1455140474848

%H R. H. Hardin, <a href="/A249466/b249466.txt">Table of n, a(n) for n = 1..2019</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4)

%F k=2: [order 37]

%F Empirical for row n:

%F n=1: [linear recurrence of order 11; also a polynomial of degree 5 plus a constant quasipolynomial with period 12]

%e Some solutions for n=3 k=4

%e ..0....2....0....1....2....3....2....3....3....3....4....3....4....4....2....3

%e ..0....0....1....0....0....0....4....0....0....4....3....4....3....2....4....2

%e ..2....0....2....2....1....4....3....0....0....4....4....0....2....0....1....2

%e ..3....0....3....0....1....0....2....4....3....3....1....3....3....0....4....0

%e ..3....2....0....3....2....3....0....0....4....4....2....4....0....2....1....1

%e ..3....2....0....1....0....4....0....3....2....3....4....2....0....2....3....2

%e ..3....4....0....2....3....1....4....2....3....3....0....4....2....4....2....1

%Y Column 1 is A135492(n+4)

%Y Column 2 is A248995

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Oct 29 2014