Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:46:10
%S 3,17,29,41,47,59,71,89,113,131,137,239,263,359,389,443,461,467,509,
%T 653,659,821,887,911,947,971,977,1151,1193,1223,1499,1553,1559,1613,
%U 1637,1667,1787,1871,1997,2039,2063,2081,2141,2243,2267,2273,2297,2351,2393,2399
%N Prime numbers Q such that the concatenation Q,1,Q is prime.
%C Primes in A103967, similar sequence without restriction on Q. - _Michel Marcus_, Oct 27 2014
%H Pierre CAMI, <a href="/A249374/b249374.txt">Table of n, a(n) for n = 1..10000</a>
%e 313 is prime so a(1) = 3.
%e 515, 717, 11111 and 13113 are all composite, 17117 is prime so a(2) = 17.
%p q:= n-> isprime(parse(cat(n, 1, n))):
%p select(q, [ithprime(i)$i=1..500])[]; # _Alois P. Heinz_, Jun 17 2021
%o (PFGW & SCRIPT), pre10.txt file with the first 10000000 prime numbers.
%o SCRIPT
%o DIM i,0
%o DIM j
%o DIM k
%o DIM n,1
%o OPENFILEOUT myf,a(n).txt
%o OPENFILEIN maf,pre10.txt
%o GETNEXT j,maf
%o LABEL loop1
%o GETNEXT j,maf
%o IF j>10^n THEN SET n,n+1
%o SET k,j*10^(n+1)+10^n+j
%o PRP k
%o IF ISPRP THEN GOTO w
%o GOTO loop1
%o LABEL w
%o SET i,i+1
%o WRITE myf,j
%o IF i>9999 THEN END
%o GOTO loop1
%o (PARI) lista(nn) = {forprime(p=1, nn, if (isprime(eval(concat(concat(Str(p), 1), Str(p)))), print1(p, ", ")););} \\ _Michel Marcus_, Oct 27 2014
%o (Magma) [p: p in PrimesUpTo(3000) | IsPrime(Seqint(Intseq(p) cat [1] cat Intseq(p)))]; // _Vincenzo Librandi_, Oct 27 2014
%o (Python)
%o from sympy import isprime, primerange
%o def ok(p): s = str(p); return isprime(int(s+'1'+s))
%o print(list(filter(ok, primerange(1, 2400)))) # _Michael S. Branicky_, Jun 17 2021
%Y Cf. similar sequences with concatenation Q,k,Q: this sequence (k=1), A249375 (k=2), A249376 (k=3), A249377 (k=4), A249378 (k=5), A249350 (k=6), A249379 (k=7), A249380 (k=8), A249381 (k=9).
%K nonn,base
%O 1,1
%A _Pierre CAMI_, Oct 27 2014