login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249320
Number of length 1+6 0..n arrays with no seven consecutive terms having six times any element equal to the sum of the remaining six.
1
126, 1792, 14336, 68712, 249088, 739284, 1898582, 4361056, 9176664, 17982930, 33230442, 58450770, 98581896, 160353634, 252737912, 387464994, 579621658, 848320494, 1217462624, 1716582952, 2381796186, 3256837500, 4394213292
OFFSET
1,1
COMMENTS
Row 1 of A249319.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) -16*a(n-2) +26*a(n-3) -30*a(n-4) +27*a(n-5) -21*a(n-6) +16*a(n-7) -11*a(n-8) +4*a(n-9) +4*a(n-10) -11*a(n-11) +16*a(n-12) -21*a(n-13) +27*a(n-14) -30*a(n-15) +26*a(n-16) -16*a(n-17) +6*a(n-18) -a(n-19).
Also a polynomial of degree 7 plus a degree 0 quasipolynomial with period 60; the first 12 are:
Empirical for n mod 60 = 0: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n.
Empirical for n mod 60 = 1: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n + (1043/60).
Empirical for n mod 60 = 2: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n - (462/5).
Empirical for n mod 60 = 3: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n + (1393/20).
Empirical for n mod 60 = 4: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n - (952/15).
Empirical for n mod 60 = 5: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n + (357/4).
Empirical for n mod 60 = 6: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n - (546/5).
Empirical for n mod 60 = 7: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n + (7931/60).
Empirical for n mod 60 = 8: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n - (1008/5).
Empirical for n mod 60 = 9: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n + (3129/20).
Empirical for n mod 60 = 10: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n - (140/3).
Empirical for n mod 60 = 11: a(n) = n^7 + (35/6)*n^6 + (91/5)*n^5 + (119/4)*n^4 + (91/3)*n^3 + (35/2)*n^2 + 6*n - (1799/20).
EXAMPLE
Some solutions for n=4
..3....4....1....3....3....1....4....0....1....0....3....2....4....1....4....4
..0....4....2....2....0....2....0....1....0....3....1....4....0....1....2....3
..1....4....4....1....4....1....4....3....3....0....3....2....0....0....2....4
..3....1....3....2....2....2....3....4....2....4....2....1....1....0....0....1
..3....3....1....4....2....4....3....1....1....2....0....4....3....0....0....4
..1....3....0....4....1....1....2....4....4....0....3....0....2....2....2....1
..0....3....4....2....3....0....2....1....2....2....3....0....2....0....1....2
CROSSREFS
Cf. A249319.
Sequence in context: A249319 A249198 A249213 * A267628 A304559 A189345
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 25 2014
STATUS
approved