Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Nov 09 2014 00:11:50
%S 1,1,3,1,6,6,1,9,21,12,1,12,45,60,24,1,15,78,171,156,48,1,18,120,372,
%T 558,384,96,1,21,171,690,1473,1656,912,192,1,24,231,1152,3225,5160,
%U 4608,2112,384,1,27,300,1785,6219,13083,16584,12240,4800,768,1,30
%N Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
%C The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 2 x + 1 + x/f(n-1,x), where f(0,x) = 1.
%H Clark Kimberling, <a href="/A249251/b249251.txt">Table of n, a(n) for n = 0..5150</a>
%e f(0,x) = 1/1, so that p(0,x) = 1
%e f(1,x) = (1 + 3 x)/1, so that p(1,x) = 1 + 3 x;
%e f(2,x) = (1 + 6 x + 3 x^2)/(1 + 3 x), so that p(2,x) = 1 + 6 x + 3 x^2.
%e First 6 rows of the triangle of coefficients:
%e 1
%e 1 3
%e 1 6 6
%e 1 9 21 12
%e 1 12 45 60 24
%e 1 15 78 171 156 48
%t z = 14; f[n_, x_] := 2 x + 1 + x/f[n - 1, x]; f[0, x_] = 1;
%t t = Table[Factor[f[n, x]], {n, 0, z}]
%t u = Numerator[t]
%t TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (*A249251 array*)
%t Flatten[CoefficientList[u, x]] (*A249251 sequence*)
%Y Cf. A249247, A249248, A249250, A249252.
%K nonn,tabl,easy
%O 0,3
%A _Clark Kimberling_, Oct 24 2014