login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of constants A(a) related to the asymptotic LCM of arithmetic progressions a*n+b (a and b coprime).
2

%I #36 Mar 17 2018 04:03:41

%S 1,2,9,8,125,18,343,352,1863,250,81191,1656,1118273,81634,271125,

%T 182144,41421503,400626,271211719,13579000,66392109,30408026,

%U 439143531,185794272,1998490625,1829999938,26311281597,10595920328,9146733078187

%N Numerators of constants A(a) related to the asymptotic LCM of arithmetic progressions a*n+b (a and b coprime).

%C Let for instance a = 4 and b = 1, then the progression is p = [5, 9, 13, 17, 21, ...], and, with n = 1000 terms, one gets log(lcm(p)) = 2657.63... and A(a)*n = A(4)*1000 = (8/3)*1000 = 2666.66... (independent of b).

%H Vincenzo Librandi, <a href="/A249225/b249225.txt">Table of n, a(n) for n = 1..1000</a>

%H Steven Finch, <a href="/A003418/a003418.pdf">Cilleruelo's LCM Constants</a>, 2013. [Cached copy, with permission of the author]

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/DirichletsTheorem.html">Dirichlet's theorem</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions">Dirichlet's theorem on arithmetic progressions</a>

%H <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>

%F A(a) = (a/phi(a))*Sum_{j=1..a, gcd(j,a)=1} 1/j.

%F log(lcm_{k=0..n} a*k+b) ~ A(a)*n for gcd(a,b)=1.

%e Sequence A(a) begins 1, 2, 9/4, 8/3, 125/48, 18/5, 343/120, 352/105, 1863/560, ...

%p f:= n -> numer(n/numtheory:-phi(n)*add(1/j, j = select(t -> igcd(t,n)=1, [$1..n-1]))):

%p f(1):= 1:

%p map(f, [$1..100]); # _Robert Israel_, Mar 14 2018

%t A[a_] := (a/EulerPhi[a])*Sum[If[GCD[j, a] == 1, 1/j, 0], {j, 1, a}]; Array[A, 40] // Numerator

%o (PARI) a(n)={numerator(n*sum(j=1,n,if(gcd(j,n)==1, 1/j))/eulerphi(n))} \\ _Andrew Howroyd_, Mar 14 2018

%Y Cf. A249226 (denominators).

%K nonn,frac

%O 1,2

%A _Jean-François Alcover_, Oct 23 2014