Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Oct 27 2014 06:42:45
%S 1,2,1,2,2,1,8,6,2,1,8,16,10,2,1,48,44,28,16,2,1,48,144,104,40,22,2,1,
%T 384,400,368,232,56,30,2,1,384,1536,1232,688,408,72,38,2,1,3840,4384,
%U 5216,3552,1248,708,92,48,2,1,3840,19200,16704,12096,7632,1968
%N Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
%C The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2*floor(n/2))/f(n-1,x), where f(x,0) = 1. (Sum of numbers in row n) = A249131(n) for n >= 0. (Column 1) = A037223.
%H Clark Kimberling, <a href="/A249130/b249130.txt">Rows 0..100, flattened</a>
%e f(0,x) = 1/1, so that p(0,x) = 1
%e f(1,x) = (2 + x)/1, so that p(1,x) = 2 + x;
%e f(2,x) = (2 + 2 x + x^2)/(3 + x), so that p(2,x) = 2 + 2 x + x^2).
%e First 6 rows of the triangle of coefficients:
%e 1
%e 2 1
%e 2 2 1
%e 8 6 2 1
%e 8 16 10 2 1
%e 48 44 28 16 2 1
%t z = 15; p[x_, n_] := x + 2 Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1;
%t t = Table[Factor[p[x, n]], {n, 1, z}]
%t u = Numerator[t]
%t TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249130 array *)
%t Flatten[CoefficientList[u, x]] (* A249130 sequence *)
%Y Cf. A249131, A037223, A249128.
%K nonn,tabl,easy
%O 0,2
%A _Clark Kimberling_, Oct 22 2014