%I #5 Oct 20 2014 18:36:21
%S 1324,1944,2844,4136,5964,8504,11964,18884,29484,45428,68892,102564,
%T 149644,243804,391596,618620,958668,1453724,2153964,3554444,5775660,
%U 9219020,14417004,22033164,32862124,54520044,89029164,142746476
%N Number of length n+5 0..3 arrays with every six consecutive terms having two times the sum of some two elements equal to the sum of the remaining four
%C Column 3 of A249085
%H R. H. Hardin, <a href="/A249080/b249080.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +30*a(n-6) -30*a(n-7) -280*a(n-12) +280*a(n-13) +960*a(n-18) -960*a(n-19) -1024*a(n-24) +1024*a(n-25)
%e Some solutions for n=6
%e ..3....3....1....1....3....3....0....0....0....1....2....2....3....1....0....0
%e ..0....0....3....3....1....2....3....3....3....0....3....0....0....3....0....1
%e ..2....2....3....3....0....0....0....3....1....0....0....3....0....2....2....2
%e ..3....2....2....1....3....0....1....1....3....1....0....2....2....0....2....3
%e ..2....1....3....1....2....1....0....2....0....1....1....2....2....0....3....2
%e ..2....1....0....0....0....3....2....0....2....3....0....0....2....3....2....1
%e ..0....0....1....1....3....3....3....3....3....1....2....2....0....1....0....0
%e ..0....0....3....3....1....2....0....3....3....0....3....0....0....3....0....1
%e ..2....2....0....0....0....0....3....0....1....0....0....0....3....2....2....2
%e ..3....2....2....1....0....0....1....1....3....1....3....2....2....0....2....0
%e ..2....1....0....1....2....1....0....2....3....1....1....2....2....0....3....2
%K nonn
%O 1,1
%A _R. H. Hardin_, Oct 20 2014