The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249018 Decimal expansion of the Flajolet-Prodinger constant 'K', a constant related to asymptotically enumerating level number sequences for binary trees. 0
 2, 5, 4, 5, 0, 5, 5, 2, 3, 5, 6, 5, 3, 1, 9, 5, 1, 3, 3, 7, 0, 8, 8, 1, 7, 7, 0, 0, 3, 1, 5, 4, 6, 1, 5, 6, 0, 4, 6, 4, 9, 3, 7, 4, 1, 7, 2, 5, 0, 6, 1, 9, 4, 4, 4, 9, 8, 4, 5, 5, 0, 0, 0, 6, 3, 8, 6, 3, 8, 9, 2, 3, 9, 0, 0, 8, 8, 3, 1, 6, 8, 6, 0, 0, 2, 5, 8, 1, 2, 2, 6, 3, 5, 5, 8, 6, 1, 8, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's composition constant, p. 294. LINKS Table of n, a(n) for n=0..99. Philippe Flajolet and Helmut Prodinger, Level number sequences for trees. FORMULA H(n) ~ K*nu^n, where H(n) is number of level number sequences associated to binary trees (Cf. A002572) and 'nu' is the constant A102375. EXAMPLE 0.254505523565319513370881770031546156046493741725... MATHEMATICA digits = 105; m0 = 5; dm = 2; Clear[f, g, v, K]; v[c_, d_] := v[c, d] = If[d<0 || c<0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2*c}]]]; H[n_] := v[1, n]; H[1] = 1; f[x_, m_] := Sum[((-1)^(j+1)*x^(2^(j+1)-2-j))/Product[1-x^(2^k-1), {k, 1, j}], {j, 1, m}] // N[#, digits]&; g[m_] := g[m] = (1/x /. FindRoot[f[x, m] == 1, {x, 5/9, 4/9, 6/9}, WorkingPrecision -> digits]); g[m0]; g[m = m0+dm]; While[RealDigits[g[m], 10, digits+5] != RealDigits[g[m-dm], 10, digits+5], m = m+dm]; nu = g[m]; K[m_] := K[m] = H[m]/nu^m; dm=100; K[m = 100]; K[m = m+dm]; While[Print[m]; RealDigits[K[m], 10, digits+5] != RealDigits[K[m-dm], 10, digits+5], m = m+dm]; RealDigits[K[m], 10, digits-5] // First CROSSREFS Cf. A002572, A102375. Sequence in context: A231730 A095758 A299212 * A235052 A102066 A279404 Adjacent sequences: A249015 A249016 A249017 * A249019 A249020 A249021 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Jan 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)