login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249018 Decimal expansion of the Flajolet-Prodinger constant 'K', a constant related to asymptotically enumerating level number sequences for binary trees. 0
2, 5, 4, 5, 0, 5, 5, 2, 3, 5, 6, 5, 3, 1, 9, 5, 1, 3, 3, 7, 0, 8, 8, 1, 7, 7, 0, 0, 3, 1, 5, 4, 6, 1, 5, 6, 0, 4, 6, 4, 9, 3, 7, 4, 1, 7, 2, 5, 0, 6, 1, 9, 4, 4, 4, 9, 8, 4, 5, 5, 0, 0, 0, 6, 3, 8, 6, 3, 8, 9, 2, 3, 9, 0, 0, 8, 8, 3, 1, 6, 8, 6, 0, 0, 2, 5, 8, 1, 2, 2, 6, 3, 5, 5, 8, 6, 1, 8, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's composition constant, p. 294.
LINKS
Philippe Flajolet and Helmut Prodinger, Level number sequences for trees.
FORMULA
H(n) ~ K*nu^n, where H(n) is number of level number sequences associated to binary trees (Cf. A002572) and 'nu' is the constant A102375.
EXAMPLE
0.254505523565319513370881770031546156046493741725...
MATHEMATICA
digits = 105; m0 = 5; dm = 2; Clear[f, g, v, K]; v[c_, d_] := v[c, d] = If[d<0 || c<0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2*c}]]]; H[n_] := v[1, n]; H[1] = 1; f[x_, m_] := Sum[((-1)^(j+1)*x^(2^(j+1)-2-j))/Product[1-x^(2^k-1), {k, 1, j}], {j, 1, m}] // N[#, digits]&; g[m_] := g[m] = (1/x /. FindRoot[f[x, m] == 1, {x, 5/9, 4/9, 6/9}, WorkingPrecision -> digits]); g[m0]; g[m = m0+dm]; While[RealDigits[g[m], 10, digits+5] != RealDigits[g[m-dm], 10, digits+5], m = m+dm]; nu = g[m]; K[m_] := K[m] = H[m]/nu^m; dm=100; K[m = 100]; K[m = m+dm]; While[Print[m]; RealDigits[K[m], 10, digits+5] != RealDigits[K[m-dm], 10, digits+5], m = m+dm]; RealDigits[K[m], 10, digits-5] // First
CROSSREFS
Sequence in context: A231730 A095758 A299212 * A235052 A102066 A279404
KEYWORD
nonn,cons
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 02:45 EST 2023. Contains 367717 sequences. (Running on oeis4.)