login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A binomial convolution.
1

%I #19 Aug 11 2021 09:31:15

%S 1,1,5,17,69,339,1677,9321,55137,343659,2285289,15910857,116120781,

%T 886308147,7033465989,58008074409,495792941337,4381170220251,

%U 39980186877537,376025841184329,3640077999981189,36224841818288547,370112212444620861,3878334404076375657

%N A binomial convolution.

%F a(n) = 0^0 + Sum_{k=0..n-1} binomial(n,k)*b(k)*c(n-k-1),

%F where the numbers b(n) = A049425(n+1) have e.g.f. (1+t)^2*exp(t+t^2+t^3/3)

%F and the numbers c(n) have e.g.f. exp(-(t+t^2+t^3/3)).

%F D-finite with recurrence: a(n+4) + n*a(n+3) - 3*(n+3)*a(n+2) - 3*(n+3)*(n+2)*a(n+1) - (n+3)*(n+2)*(n+1)*a(n) = 0.

%F E.g.f.: A(t) = 1+(1+t)^2*exp(t+t^2+t^3/3)*Integral_{u=0..t} exp(-(u+u^2+u^3/3)) du.

%F Differential equation for the e.g.f.: (1+t)*A''(t) - (2+3*t+3*t^2+t^3)*A'(t) - 3*(1+t)^2*A(t) = 0.

%t b[n_] := Sum[(n!/k!)Sum[Binomial[k,i]Binomial[k-i+2,n-2i-k]/3^i,{i,0,k}],{k,0,n}]

%t c[n_] := Sum[(n!/k!)(-1)^k Sum[Binomial[k,i]Binomial[k-i,n-2i-k]/3^i,{i,0,k}],{k,0,n}]

%t Table[If[n==0,1,0]+Sum[Binomial[n,k]b[k]c[n-k-1],{k,0,n-1}],{n,0,40}]

%o (Maxima) b(n) := sum((n!/k!)*sum(binomial(k,i)*binomial(k-i+2,n-2*i-k)/3^i,i,0,k),k,0,n);

%o c(n) := sum((n!/k!)*(-1)^k*sum(binomial(k,i)*binomial(k-i,n-2*i-k)/3^i,i,0,k),k,0,n);

%o makelist((if n=0 then 1 else 0)+sum(binomial(n,k)*b(k)*c(n-k-1),k,0,n-1),n,0,20);

%Y Cf. A049425, A252284.

%K nonn

%O 0,3

%A _Emanuele Munarini_, Oct 20 2014