login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249002 Number of length 1+4 0..n arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two. 1
30, 190, 820, 2540, 6450, 13990, 27740, 50260, 86030, 139450, 217320, 325940, 475630, 674650, 937020, 1274160, 1703970, 2240850, 2908260, 3723400, 4715230, 5905430, 7328400, 9009880, 10991870, 13303750, 15994820, 19100260, 22676370 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 3*a(n-2) - a(n-3) - 5*a(n-4) - 3*a(n-5) + 6*a(n-6) + 6*a(n-7) - 3*a(n-8) - 5*a(n-9) - a(n-10) + 3*a(n-11) + a(n-12) - a(n-13).
Empirical for n mod 6 = 0: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (47/3)*n
Empirical for n mod 6 = 1: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (86/9)*n + (565/72)
Empirical for n mod 6 = 2: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (181/9)*n - (20/9)
Empirical for n mod 6 = 3: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (2/3)*n + (205/8)
Empirical for n mod 6 = 4: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (55/6)*n^2 + (221/9)*n - (160/9)
Empirical for n mod 6 = 5: a(n) = n^5 + (185/72)*n^4 + (130/9)*n^3 - (65/12)*n^2 + (46/9)*n + (1685/72).
Empirical g.f.: 10*x*(3 + 16*x + 54*x^2 + 118*x^3 + 179*x^4 + 178*x^5 + 143*x^6 + 84*x^7 + 44*x^8 + 24*x^9 + 21*x^10) / ((1 - x)^6*(1 + x)^3*(1 + x + x^2)^2). - Colin Barker, Nov 09 2018
EXAMPLE
Some solutions for n=6:
6 2 5 5 0 5 4 4 3 2 2 6 3 4 0 0
4 3 4 5 3 1 5 6 1 2 1 6 4 6 1 3
1 1 6 4 5 6 5 2 0 1 6 6 0 2 1 1
1 5 5 1 1 4 5 6 2 1 0 6 3 6 0 4
3 1 0 1 0 3 1 1 2 2 5 2 4 0 5 4
CROSSREFS
Row 1 of A249001.
Sequence in context: A265037 A249001 A249466 * A249467 A309924 A120339
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 18 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 13:08 EDT 2024. Contains 375764 sequences. (Running on oeis4.)