%I #6 Dec 12 2014 20:29:36
%S 30,190,58,820,464,112,2540,2668,1140,216,6450,10360,8680,2802,416,
%T 13990,32398,42308,28240,6872,802,27740,82348,163112,172888,91888,
%U 16800,1546,50260,189660,485580,822348,706704,299044,41084,2980,86030,387900
%N T(n,k)=Number of length n+4 0..k arrays with no five consecutive terms having two times the sum of any three elements equal to three times the sum of the remaining two
%C Table starts
%C ....30....190......820......2540........6450........13990........27740
%C ....58....464.....2668.....10360.......32398........82348.......189660
%C ...112...1140.....8680.....42308......163112.......485580......1298968
%C ...216...2802....28240....172888......822348......2865126......8902860
%C ...416...6872....91888....706704.....4149708.....16909524.....61034658
%C ...802..16800...299044...2888944....20952218.....99817384....418454994
%C ..1546..41084...973204..11810564...105819690....589354152...2869206494
%C ..2980.100590..3167500..48286456...534502810...3479916010..19673497892
%C ..5744.246378.10309372.197422012..2700047696..20548067494.134897701458
%C .11072.603406.33554728.807188768.13640156760.121333048614.924972633722
%H R. H. Hardin, <a href="/A249001/b249001.txt">Table of n, a(n) for n = 1..2018</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1) +a(n-2) +a(n-3) +a(n-4)
%F k=2: [order 37]
%F k=3: [order 9]
%F Empirical for row n:
%F n=1: [linear recurrence of order 13; also a polynomial of degree 5 plus a quadratic quasipolynomial with period 6]
%e Some solutions for n=4 k=4
%e ..2....0....1....0....1....0....0....1....0....2....0....0....1....1....1....2
%e ..1....0....1....2....0....2....3....0....4....3....2....4....1....3....0....1
%e ..2....3....1....2....2....2....1....3....0....1....1....4....0....3....0....0
%e ..2....0....3....2....0....2....3....2....1....4....3....2....2....1....1....4
%e ..1....1....3....0....0....2....0....0....4....2....3....3....2....4....0....0
%e ..3....4....0....2....0....4....0....2....0....2....4....4....3....0....1....0
%e ..0....1....2....0....4....3....2....2....3....4....2....0....0....0....1....2
%e ..1....2....0....4....0....3....4....0....1....4....1....2....0....3....0....0
%Y Column 1 is A135492(n+4)
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Oct 18 2014
|