%I #14 Oct 24 2014 04:04:06
%S 1,4,1,4,13,1,4,94,28,1,4,526,460,49,1,4,2551,5860,1399,76,1,4,11299,
%T 64180,30559,3316,109,1,4,47020,635716,566374,109156,6724,148,1,4,
%U 186988,5861188,9384358,3012196,309124,12244,193,1,4,718429,51210820,143307490,73556068,11790874,747076,20605,244,1,4,2686729,429124420,2056495090,1641197668,394515874,37488676,1608205,32644,301,1
%N Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x-3k)^k for 0 <= k <= n.
%C Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x-0)^0 + A_1*(x-3)^1 + A_2*(x-6)^2 + ... + A_n*(x-3n)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
%F T(n,n-1) = 1 + 3n^2 for n > 0.
%F T(n,1) = (3^n*(n^2-n+1)-1)/2 for n > 0.
%e 1;
%e 4, 1;
%e 4, 13, 1;
%e 4, 94, 28, 1;
%e 4, 526, 460, 49, 1;
%e 4, 2551, 5860, 1399, 76, 1;
%e 4, 11299, 64180, 30559, 3316, 109, 1;
%e 4, 47020, 635716, 566374, 109156, 6724, 148, 1;
%e 4, 186988, 5861188, 9384358, 3012196, 309124, 12244, 193, 1;
%e 4, 718429, 51210820, 143307490, 73556068, 11790874, 747076, 20605, 244, 1;
%o (PARI) for(n=0, 10, for(k=0, n, if(!k, if(n, print1(4, ", ")); if(!n, print1(1, ", "))); if(k, print1(sum(i=1, n, ((3*k)^(i-k)*i*binomial(i,k)))/k, ", "))))
%Y Cf. A248977, A248830, A242598, A193843, A153703, A056107.
%K nonn,tabl
%O 0,2
%A _Derek Orr_, Oct 18 2014