login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248974
Floor( 1/(n*sinh(1/n) + n*sin(1/n) - 2) ).
1
59, 959, 4859, 15359, 37499, 77759, 144059, 245759, 393659, 599999, 878459, 1244159, 1713659, 2304959, 3037499, 3932159, 5011259, 6298559, 7819259, 9599999, 11668859, 14055359, 16790459, 19906559, 23437499, 27418559, 31886459, 36879359, 42436859, 48599999
OFFSET
1,1
COMMENTS
When the numbers k*sinh[1/k] - 1 and 1 - k*sin[1/k], for k >=1, are jointly ranked, the former occupy positions 1,3,5,7,... and the latter occupy positions 2,4,6,8,... The difference between neighbors is n*Sinh[1/n] + n*Sin[1/n] - 2, so that A248968 represents the closeness between neighbors. All the terms end in 9.
FORMULA
a(n) = 60*n^4 - 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Colin Barker, Oct 22 2014
G.f.: x*(x^4-64*x^3-654*x^2-664*x-59) / (x-1)^5. - Colin Barker, Oct 22 2014
MATHEMATICA
Table[Floor[1/(n*Sinh[1/n] + n*Sin[1/n] - 2)], {n, 1, 60}]
PROG
(PARI) Vec(x*(x^4-64*x^3-654*x^2-664*x-59)/(x-1)^5 + O(x^100)) \\ Colin Barker, Oct 22 2014
(Magma) [Floor(1/(n*Sinh(1/n) + n*Sin(1/n) - 2)): n in [1..30]]; // Vincenzo Librandi, Oct 23 2014
CROSSREFS
Cf. A000583.
Sequence in context: A215433 A093259 A336576 * A245941 A248620 A374450
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 19 2014
STATUS
approved