login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Smallest term in wrecker ball sequence starting with n.
11

%I #37 Mar 24 2023 23:11:57

%S 0,0,-4,0,-47,-46,0,-6362,-23,-22,0,-32,-471,-470,-29,0,-218,-4843985,

%T -39,-38,-657367,0,-101,-57,-56,-7609937,-45,-44,0,-736,-56168428,

%U -3113136,-3113135,-3113134,-3113133,-51,0,-190,-1213998,-1213997,-495,-62,-61,-60

%N Smallest term in wrecker ball sequence starting with n.

%C Starting at n, a(n) is the minimum value reached according to the following rules. On the k-th step (k = 1, 2, 3, ...) move a distance of k in the direction of zero. If the number landed on has been landed on before, move a distance of k away from zero instead. See A228474 and A248939. - _David Nacin_, Mar 15 2019

%C It is currently unproved whether all orbits are finite, and therefore unclear whether all a(n) are well defined. In particular, the orbit of n = 11281 is of unknown length, but is certainly greater than 32*10^9. - _M. F. Hasler_, Mar 18 2019

%H M. F. Hasler, <a href="/A248952/b248952.txt">Table of n, a(n) for n = 0..5000</a> (first 1000 terms from Reinhard Zumkeller), Mar 19 2019

%H Gordon Hamilton, <a href="https://www.youtube.com/watch?v=mQdNaofLqVc">Wrecker Ball Sequences</a>, Video, 2013

%F a(n) = smallest term in row n of triangle A248939;

%F a(A000217(n)) = 0; a(A014132(n)) < 0.

%e a(0) = min{0} = 0;

%e a(1) = min{1,0} = 0;

%e a(2) = min{2,1,-1,-4,0} = -4;

%e a(3) = min{3,2,0} = 0;

%e a(4) = min{4,3,1,-2,2,-3,-9,-16,-8,-17,-7,-18,-6,7,21,6,-10,-27,...} = -47;

%e a(5) = min{5,4,2,-1,3,-2,-8,-15,-7,-16,-6,-17,-5,8,22,7,-9,-26,...} = -46;

%e a(6) = min{6,5,3,0} = 0;

%e a(7) = min{7,6,4,1,-3,2,-4,3,-5,-14,-24,-13,-1,12,-2,13,29,46,...} = -6362;

%e a(8) = min{8,7,5,2,-2,3,-3,4,-4,-13,-23,-12,0} = -23;

%e a(9) = min{9,8,6,3,-1,4,-2,5,-3,-12,-22,-11,1,14,0} = -22.

%o (Haskell)

%o import Data.IntSet (singleton, member, insert, findMin, findMax)

%o a248952 n = a248952_list !! n

%o (a248952_list, a248953_list) = unzip $

%o map (\x -> minmax 1 x $ singleton x) [0..] where

%o minmax _ 0 s = (findMin s, findMax s)

%o minmax k x s = minmax (k + 1) y (insert y s) where

%o y = x + (if (x - j) `member` s then j else -j)

%o j = k * signum x

%o (Python)

%o #This and sequences A324660-A324692 generated by manipulating this trip function

%o #spots - positions in order with possible repetition

%o #flee - positions from which we move away from zero with possible repetition

%o #stuck - positions from which we move to a spot already visited with possible repetition

%o def trip(n):

%o stucklist = list()

%o spotsvisited = [n]

%o leavingspots = list()

%o turn = 0

%o forbidden = {n}

%o while n != 0:

%o turn += 1

%o sign = n // abs(n)

%o st = sign * turn

%o if n - st not in forbidden:

%o n = n - st

%o else:

%o leavingspots.append(n)

%o if n + st in forbidden:

%o stucklist.append(n)

%o n = n + st

%o spotsvisited.append(n)

%o forbidden.add(n)

%o return {'stuck':stucklist, 'spots':spotsvisited,

%o 'turns':turn, 'flee':leavingspots}

%o #Actual sequence

%o def a(n):

%o d = trip(n)

%o return min(d['spots'])

%o # _David Nacin_, Mar 15 2019

%o (Python)

%o def A248952(n):

%o return min(A248939_row(n)); # _M. F. Hasler_, Mar 18 2019

%o (C++) #include<map>

%o long A248952(long n) { long c=0, s, m=0; for(std::map<long, bool> seen; n; n += seen[n-(s=n>0?c:-c)] ? s:-s) { if(n<m) m=n; seen[n]=true; ++c; } return m; } // _M. F. Hasler_, Mar 18 2019

%Y Cf. A228474 (main entry for wrecker ball sequences).

%Y Cf. A248939, A248953, A000217, A014132.

%K sign

%O 0,3

%A _Reinhard Zumkeller_, Oct 18 2014

%E Edited by _M. F. Hasler_, Mar 18 2019