login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integers k^5 that divide 1!*2!*3!*...*n!.
5

%I #11 Oct 27 2023 20:44:53

%S 1,1,1,2,2,6,8,10,42,64,200,432,588,1024,3888,6300,21120,33696,52080,

%T 114240,328320,816480,3326400,4435200,6469632,20616960,57153600,

%U 145411200,258003900,320973840,791513856,1634592960,6403719168,9967104000,34939296000

%N Number of integers k^5 that divide 1!*2!*3!*...*n!.

%H Alois P. Heinz, <a href="/A248823/b248823.txt">Table of n, a(n) for n = 1..1000</a> (first 400 terms from Clark Kimberling)

%e a(6) counts these integers k^5 that divide 24883200: 1, 32, 1024, 7776, 32768, 248832, these being k^5 for k = 1, 2, 3, 4, 6, 12.

%p b:= proc(n) option remember; add(i[2]*x^numtheory[pi](i[1]),

%p i=ifactors(n)[2])+`if`(n=1, 0, b(n-1))

%p end:

%p c:= proc(n) option remember; b(n)+`if`(n=1, 0, c(n-1)) end:

%p a:= n->(p->mul(iquo(coeff(p, x, i), 5)+1, i=1..degree(p)))(c(n)):

%p seq(a(n), n=1..30); # _Alois P. Heinz_, Oct 16 2014

%t z = 40; p[n_] := Product[k!, {k, 1, n}];

%t f[n_] := f[n] = FactorInteger[p[n]];

%t r[m_, x_] := r[m, x] = m*Floor[x/m]

%t u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];

%t v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];

%t t[m_, n_] := Apply[Times, 1 + r[m, v[n]]/m]

%t m = 5; Table[t[m, n], {n, 1, z}] (* A248823 *)

%Y Cf. A000178, A248784, A248821, A248822.

%K nonn,easy

%O 1,4

%A _Clark Kimberling_, Oct 15 2014