Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 17 2014 23:54:25
%S 1,-1,1,3,-3,1,-5,9,-5,1,11,-23,19,-7,1,-21,57,-61,33,-9,1,43,-135,
%T 179,-127,51,-11,1,-85,313,-493,433,-229,73,-13,1,171,-711,1299,-1359,
%U 891,-375,99,-15,1,-341,1593,-3309,4017,-3141,1641,-573,129,-17,1,683,-3527,8211,-11343,10299,-6423,2787,-831,163,-19,1
%N Signed version of A164984.
%C Consider the transformation 1 + x + x^2 + x^3 + ... + x^n = A_0*(x+2)^0 + A_1*(x+2)^1 + A_2*(x+2)^2 + ... + A_n*(x+2)^n. This sequence gives A_0, ... A_n as the entries in the n-th row of this triangle, starting at n = 0.
%F T(n,n-1) = -2*n+1 for n > 0.
%F T(n,n-2) = 2*(n-1)^2+1 for n > 1.
%F T(n,0) = A077925(n).
%F T(n,1) = (-1)^(n+1)*A045883(n).
%F Rows with odd n sum to 0.
%F Rows with even n sum to 1.
%e 1;
%e -1, 1;
%e 3, -3, 1;
%e -5, 9, -5, 1;
%e 11, -23, 19, -7, 1;
%e -21, 57, -61, 33, -9, 1;
%e 43, -135, 179, -127, 51, -11, 1;
%e -85, 313, -493, 433, -229, 73, -13, 1;
%e 171, -711, 1299, -1359, 891, -375, 99, -15, 1;
%e -341, 1593, -3309, 4017, -3141, 1641, -573, 129, -17, 1;
%e 683, -3527, 8211, -11343, 10299, -6423, 2787, -831, 163, -19, 1;
%o (PARI) for(n=0,20,for(k=0,n,print1(1/k!*sum(i=0,n,((-2)^(i-k)*prod(j=0,k-1,i-j))),", ")))
%Y Cf. A164984, A193845, A077925, A045883.
%K sign,tabl
%O 0,4
%A _Derek Orr_, Oct 14 2014