Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Dec 23 2024 14:53:44
%S 0,0,1,-2,2,-2,3,-1,-4,4,0,-4,5,1,-3,-6,6,2,-2,-6,7,3,-1,-5,-8,8,4,0,
%T -4,-8,9,5,1,-3,-7,-10,10,6,2,-2,-6,-10,11,7,3,-1,-5,-9,-12,12,8,4,0,
%U -4,-8,-12,13,9,5,1,-3,-7,-11,-14,14,10,6,2,-2,-6,-10,-14
%N Irregular triangle read by rows: row n gives golden ratio base representation of Fibonacci number F_n.
%C Each row can be viewed as either a sequence of powers of phi (the golden ratio) or as a sequence of indices of combinatorial Fibonacci numbers (Fibonacci numbers offset so that f(0)=1,f(1)=1) (see Benjamin & Quinn).
%C From _Wolfdieter Lang_, Oct 16 2014: (Start)
%C With F(n) = A000045(n) (extended to negative arguments by F(-n) = (-1)^(n+1)*F(n)) one has (proof by induction, using the F recurrence and phi^n = phi^(n-1) + phi^(n-2))
%C F(2*k) = sum(phi^(2*(n-1) - 4*m), m = 0..k-1), k >= 1 and F(2*k+1) = sum(phi^(2*n-1 - 4*m), m = 0..k-1) + phi^(-2*n), k >= 0.
%C This shows, using phi^n = F(n-1) + F(n)*phi for integer n, the identity sum(F(2*(k-1) - 4*m, m=0..k-1) = 0 (and similar ones).
%C The row sums [0, 0, -1, 0, -2, 0, -3, 0, ...] (offset 1) have o.g.f. -x^3/(1-x^2)^2. The alternating row sums [0, 0, 3, 4, 0, 0, 7, 8, 0, 0, 11, 12, ...] have o.g.f. x^3*(3 - 2*x + x^2)/(1 - x + x^2 -x^3)^2.
%C (End)
%C This representation of the Fibonacci numbers can be found in the paper of Frougny and Sakarovitch. - _Michel Dekking_, Feb 10 2020
%C See also A105424. - _Michel Dekking_, Feb 10 2020
%D Arthur T. Benjamin and Jennifer J. Quinn, Proofs that Really Count, Dolciani Mathematical Expositions (MAA), (2003).
%H Michel Marcus, <a href="/A248808/b248808.txt">Rows n = 1..100 of triangle, flattened</a>
%H George Bergman, <a href="http://www.jstor.org/stable/3029218">A number system with an irrational base</a>, Math. Mag. 31 (1957), pp. 98-110.
%H Christiane Frougny and Jacques Sakarovitch, <a href="https://www.researchgate.net/publication/2596608_Automatic_conversion_from_Fibonacci_representation_to_representation_in_base_ph_and_a_generalization">Automatic conversion from Fibonacci representation to representation in base phi and a generalization</a>, (1998).
%H Dale Gerdemann, <a href="https://www.youtube.com/watch?v=1LtjGV-nLG0">Golden Ratio Base Digit Patterns for Columns of the Fibonomial Triangle</a> video (2014).
%H Dale Gerdemann, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2014-October/013807.html">Fibonacci numbers in Golden Ratio Base</a>, Seqfan post, Oct 12 2014.
%F T(2*k, m) = 2*(k-1)-4*m, m = 0, ..., k-1 for k >= 1, and T(2*k+1, m) = 2*k-1-4*m, m = 0, ..., k-1, and T(2*k+1, k) = -2*k for k >= 0. See a comment above for the proof. - _Wolfdieter Lang_, Oct 16 2014
%e There are two rows of length one, two rows of length 2, etc. For example, the 6th row, 4,0,-4, is the sequence of powers of phi ((1+sqrt(5))/2) used to represent the number 8.
%e [0] 1
%e [0] 1
%e [1, -2] 2
%e [2, -2] 3
%e [3, -1, -4] 5
%e [4, 0, -4] 8
%e [5, 1, -3, -6] 13
%e [6, 2, -2, -6] 21
%e [7, 3, -1, -5, -8] 34
%e [8, 4, 0, -4, -8] 55
%e [9, 5, 1, -3, -7, -10] 89
%e [10, 6, 2, -2, -6, -10] 144
%e [11, 7, 3, -1, -5, -9, -12] 233
%e [12, 8, 4, 0, -4, -8, -12] 377
%t T[n_, m_] := If[n == 2*m+1, -2*m, n-4*m-2];
%t Table[T[n, m], {n, 1, 15}, {m, 0, Floor[(n - 1)/2]}] // Flatten (* _Jean-François Alcover_, Jul 13 2016, after _Wolfdieter Lang_ *)
%o (PARI) T(n, m) = if (n == 2*m+1, -2*m, n-4*m-2);
%o tabf(nn) = for (n=1, nn, for (k=0, (n-1)\2, print1(T(n,k), ", "));); \\ _Michel Marcus_, May 28 2019
%Y Cf. A000045.
%K sign,tabf,nice
%O 1,4
%A _Dale Gerdemann_, Oct 14 2014
%E Rows 12 to 14 added by _Wolfdieter Lang_, Oct 23 2014
%E More terms from _Michel Marcus_, May 28 2019