login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest 4th-power-free divisor of n!
4

%I #11 Sep 01 2024 09:37:43

%S 1,2,6,24,120,45,315,2520,280,175,1925,23100,300300,4204200,63063000,

%T 63063000,1072071000,14889875,282907625,9053044,190113924,4182506328,

%U 96197645544,144296468316,3607411707900,93792704405400,31264234801800,22787343150,660832951350

%N Greatest 4th-power-free divisor of n!

%H Clark Kimberling, <a href="/A248766/b248766.txt">Table of n, a(n) for n = 1..1000</a>

%H Rafael Jakimczuk, <a href="https://doi.org/10.12988/imf.2017.7542">On the h-th free part of the factorial</a>, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634.

%F a(n) = n!/A248764(n).

%F From _Amiram Eldar_, Sep 01 2024: (Start)

%F a(n) = A053165(n!).

%F log(a(n)) = 2*log(2) * n + o(n) (Jakimczuk, 2017). (End)

%e a(6) = 45 because 45 divides 6! and if k > 45 divides 6!, then h^4 divides 6!/k for some h > 1.

%t z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];

%t u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];

%t v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];

%t p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];

%t m = 4; Table[p[m, n], {n, 1, z}] (* A248764 *)

%t Table[p[m, n]^(1/m), {n, 1, z}] (* A248765 *)

%t Table[n!/p[m, n], {n, 1, z}] (* A248766 *)

%t f[p_, e_] := p^Mod[e, 4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* _Amiram Eldar_, Sep 01 2024 *)

%o (PARI) a(n) = my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2] % 4)); \\ _Amiram Eldar_, Sep 01 2024

%Y Cf. A000142, A053165, A248764, A248765.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Oct 14 2014