%I #18 Jul 15 2024 16:35:45
%S 1,2,5,14,37,94,236,584,1437,3529,8654,21210,51966,127302,311840,
%T 763864,1871094,4583243
%N Number of digits in the decimal expansion of the number of partitions of 6^n.
%F A248733 = A055642 o A000041 o A000400. \\ _M. F. Hasler_, Oct 16 2014
%t f[n_] := Floor[ Log[10, PartitionsP[ 6^n]] + 1]; Table[ f@n, {n, 0, 17}]
%o (Magma) [Floor(Log(10,(NumberOfPartitions(6^n))))+1: n in [0..7]]; // _Vincenzo Librandi_, Oct 13 2014
%o (PARI) a(n) = #Str(numbpart(6^n)); \\ _Michel Marcus_, Oct 16 2014
%o (Python)
%o from sympy import npartitions
%o from gmpy2 import digits
%o def A248733(n): return len(digits(npartitions(6**n))) # _Chai Wah Wu_, Jul 15 2024
%Y Cf. A129490, A248729, A248731, A248735, A077644, A248736, A248732.
%K nonn,base,more
%O 0,2
%A _Robert G. Wilson v_, Oct 12 2014