Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 30 2022 15:57:53
%S 1,9,0,9,1,0,0,6,2,4,1,0,2,6,1,5,7,8,2,0,2,1,9,9,6,4,4,4,1,7,6,9,1,1,
%T 6,8,7,6,9,2,6,8,4,7,6,0,0,8,2,6,6,4,0,8,3,3,4,7,7,1,1,0,8,6,4,0,9,9,
%U 9,6,7,5,5,8,4,6,3,0,1,4,4,0,3,8,0,0,9,1,1,6,1,6,5,9,7,0,9,1,1,9,3,4,5,6,1
%N Decimal expansion of Sum_{k>=1} 1/(7^k - 1).
%H G. C. Greubel, <a href="/A248724/b248724.txt">Table of n, a(n) for n = 0..10000</a>
%F Equals Sum_{k>=1} d(k)/7^k, where d(k) is the number of divisors of k (A000005). - _Amiram Eldar_, Jun 22 2020
%e 0.1909100624102615782021996444176911687692684760082664083347711086409996755846...
%p evalf(sum(1/(7^k-1), k=1..infinity),120) # _Vaclav Kotesovec_, Oct 18 2014
%p # second program with faster converging series
%p evalf( add( (1/7)^(n^2)*(1 + 2/(7^n - 1)), n = 1..11), 105); # _Peter Bala_, Jan 30 2022
%t x = 1/7; RealDigits[ Sum[ DivisorSigma[0, k] x^k, {k, 1000}], 10, 105][[1]] (* after an observation and the formula of _Amarnath Murthy_, see A073668 *)
%o (PARI) suminf(k=1, 1/(7^k-1)) \\ _Michel Marcus_, Oct 18 2014
%Y Cf. A000005, A065442, A073668, A214369, A248721, A248722, A248723, A248725, A248726.
%K nonn,cons
%O 0,2
%A _Robert G. Wilson v_, Oct 12 2014