login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n*(n+1))^5.
1

%I #35 Jan 20 2024 14:40:29

%S 0,32,7776,248832,3200000,24300000,130691232,550731776,1934917632,

%T 5904900000,16105100000,40074642432,92389579776,199690286432,

%U 408410100000,796262400000,1488827973632,2682916351776,4678757435232,7923516800000,13069123200000

%N a(n) = (n*(n+1))^5.

%C This is the sequence (2^5)*A059860(n)= (2*binomial(n+1,2))^5, n >= 0. - _Wolfdieter Lang_, Nov 03 2014

%H Andrew Howroyd, <a href="/A248720/b248720.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).

%F a(n) = A002378(n)^5.

%F a(n) = 32*A059860(n) for n>0.

%F G.f.: 32*x*(x^8 + 232*x^7 + 5158*x^6 + 27664*x^5 + 47290*x^4 + 27664*x^3 + 5158*x^2 + 232*x + 1) / (1 - x)^11 (from A059860).

%F Sum_{n>=1} 1/a(n) = 126 - 35*Pi^2/3 - Pi^4/9. - _Vaclav Kotesovec_, Sep 25 2019

%F a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11). - _Wesley Ivan Hurt_, Jan 20 2024

%p [ seq(n^5*(n+1)^5, n = 0..100) ];

%t Table[(n (n + 1))^5, {n, 0, 70}] (* or *) CoefficientList[Series[32 x (x^8 + 232 x^7 + 5158 x^6 + 27664 x^5 + 47290 x^4 + 27664 x^3 + 5158 x^2 + 232 x + 1)/(1 - x)^11, {x, 0, 30}], x]

%t LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{0,32,7776,248832,3200000,24300000,130691232,550731776,1934917632,5904900000,16105100000},20] (* _Harvey P. Dale_, Apr 23 2017 *)

%o (Magma) [(n*(n+1))^5: n in [0..30]];

%Y Cf. A059860, A002378 (n*(n+1)), A035287(n+1) ((n*(n+1))^2), A060459 ((n*(n+1))^3), A248619 ((n*(n+1))^4).

%K nonn,easy

%O 0,2

%A _Eugene Chong_, Oct 16 2014

%E Terms a(32) and beyond corrected by _Andrew Howroyd_, Feb 20 2018