login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A248714
a(n) = p - prime(n)#^2, where prime(n)# is the product of the first n primes and p is the smallest prime > prime(n)#^2 + 1.
0
3, 5, 7, 11, 17, 29, 23, 41, 29, 37, 89, 79, 89, 71, 439, 389, 163, 79, 151, 73, 89, 211, 113, 113, 419, 167, 139, 199, 173, 137, 487, 197, 401, 167, 739, 641, 461, 199, 223, 331, 379, 401, 293, 223, 251, 647, 593, 613, 317, 271, 257, 947, 331, 347, 593, 433
OFFSET
1,1
COMMENTS
Conjecture: Analogous to Fortune's Conjecture (A005235) all a(n) are prime, so are all members of a(n)=p-k*prime(n)#, k=natural number.
Besides, many powers p-prime(n)#^m, m=natural number, behave as well, e.g. p-prime(n)#^29 does, p-prime(n)#^30 does not.
PROG
(PARI) a(n) = {hp = prod(ip=1, n, prime(ip)); nextprime(hp^2+2) - hp^2; } \\ Michel Marcus, Oct 12 2014
(MuPAD) q:=1; p:=1; for i from 1 to 100 do q:=nextprime(q+1); p:=p*q; N:=nextprime(p^2+2)-p^2; print(i, N); end_for: \\ Werner D. Sand, Oct 13 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Werner D. Sand, Oct 12 2014
STATUS
approved