login
The squares related to the strictly increasing subsequence of A053667(n), n >= 1.
2

%I #12 Jan 15 2018 15:31:27

%S 1,4,9,25,36,49,169,256,289,576,676,1849,3844,3969,5776,6889,26896,

%T 27889,55696,69696,97969,339889,376996,499849,678976,698896,779689,

%U 2679769,2768896,2778889,4695889,4999696,9696996,26697889,28879876,36759969,37994896

%N The squares related to the strictly increasing subsequence of A053667(n), n >= 1.

%C The triangular numbers of this form are at A246753.

%H K. D. Bajpai, <a href="/A248648/b248648.txt">Table of n, a(n) for n = 1..116</a>

%e 5 * 5 = 25 is a square and the product of its digits = 2 * 5 = 10. Because a(3) = 9, and 4 * 4 = 16 has product of digits 6 < 9, a(4) = 25 because 10 > 9. The next entry a(5) comes from 6 * 6 = 36 with product of digits 18 > 10.

%e From _Wolfdieter Lang_, Oct 31 2014: (Start)

%e A053667 is sieved (from the left to the right):

%e 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...

%e 1, 4, 9, 6, 10, 18, 36, 24, 8, 0, 2, 16, 54, 54, ...

%e 1, 4, 9, x, 10, 18, 36, x, x, x, x, x, 54, x, ...

%e and the related leftover squares are

%e 1, 4, 9, 25 36, 49, 169, ...

%e (End)

%e -------------------------------------------------------

%t A248648 = {}; k = 0; Do[s = Apply[Times, IntegerDigits[n^2]];If[s > k, k = s; AppendTo[A248648, n^2]], {n, 1, 10^4}]; A248648

%o (PARI)

%o product=0;for(n=1,10^5,d=digits(n^2);p=prod(i=1,#d,d[i]);while(p>product,print1(n^2,", ");product=p)) \\ _Derek Orr_, Oct 11 2014

%Y Cf. A000290, A230041, A246569, A246753, A053667.

%K nonn,base,easy

%O 1,2

%A _K. D. Bajpai_, Oct 10 2014

%E Edited, Name specified, example reformulated, A053667 and 'easy' added. - _Wolfdieter Lang_, Oct 31 2014