login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that A248636(k+1) = A248636(k) + 1.
3

%I #4 Oct 17 2014 23:19:43

%S 2,4,7,8,10,12,14,15,17,19,20,22,23,25,26,28,29,31,32,34,35,37,38,40,

%T 41,43,44,46,47,48,50,51,53,54,56,57,59,60,61,63,64,66,67,69,70,71,73,

%U 74,76,77,78,80,81,83,84,86,87,88,90,91,93,94,95,97,98

%N Numbers k such that A248636(k+1) = A248636(k) + 1.

%H Clark Kimberling, <a href="/A248637/b248637.txt">Table of n, a(n) for n = 1..1000</a>

%e (A248636(k+1) = A248636(k)) = (2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2,... ), so that A248637 = (2, 4, 7, 8, 10, 12, 14, ... ) and A248638 = (1, 3, 5, 6, 9, 11, 13, ...).

%t z = 300; p[k_] := p[k] = Sum[(h^3/3^h), {h, 1, k}];

%t d = N[Table[33/8 - p[k], {k, 1, z/5}], 12]

%t f[n_] := f[n] = Select[Range[z], 33/8 - p[#] < 1/4^n &, 1];

%t u = Flatten[Table[f[n], {n, 1, z}]] (* A248636 *)

%t d = Differences[u]

%t v = Flatten[Position[d, 1]] (* A248637 *)

%t w = Flatten[Position[d, 2]] (* A248638 *)

%Y Cf. A248635, A248636, A248630.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Oct 11 2014