%I
%S 1,1,1,2,1,2,2,2,1,1,2,2,1,2,4,1,2,2,2,4,2,2,1,1,2,4,2,2,2,1,2,1,4,2,
%T 2,2,2,2,2,1,1,2,1,2,2,2,4,2,2,4,1,1,6,1,2,4,2,4,2,1,6,1,4,4,2,2,2,2,
%U 4,2,2,1,2,2,4,2,4,2,10,2,1,6,1,2,2,1
%N a(n) = A248595(n)  prime(n)*A248596(n).
%C If a(n)=1 then prime(n) is a Sophie Germain prime.
%C Except for Sophie Germain primes a(n) is always even.
%C Conjecture: all even numbers are present many times in A248597(n) and any even number may be written in many ways as the difference between a prime Q and a product of two primes P*R.
%H Pierre CAMI, <a href="/A248597/b248597.txt">Table of n, a(n) for n = 1..10000</a>
%Y Cf. A005384 (Sophie Germain primes), A248595, A248596.
%K nonn
%O 1,4
%A _Pierre CAMI_, Oct 09 2014
