login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of product_{n>=1} (2n/(2n+1))^((-1)^t(n-1)), a probabilistic counting constant, where t(n) = A010060(n) is the Thue-Morse sequence.
0

%I #12 Dec 26 2021 19:24:11

%S 8,7,1,1,5,7,0,4,6,4,1,4,8,9,3,7,4,1,6,1,7,8,5,7,6,5,6,4,5,9,1,9,1,6,

%T 0,6,2,6,0,3,9,2,3,2,6,3,9,7,5,2,4,1,8,9,1,2,9,0,2,2,7,1,3,8,0,0,9,3,

%U 1,8,2,4,6,6,1,2,4,7,5,4,1,7,0,8,7,8,3

%N Decimal expansion of product_{n>=1} (2n/(2n+1))^((-1)^t(n-1)), a probabilistic counting constant, where t(n) = A010060(n) is the Thue-Morse sequence.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse constant, p. 438.

%H J.-P. Allouche and Jeffrey Shallit, <a href="http://www.cs.uwaterloo.ca/~shallit/Papers/ubiq.ps">The Ubiquitous Prouhet-Thue-Morse Sequence</a>, in C. Ding. T. Helleseth and H. Niederreiter, eds., Sequences and Their Applications: Proceedings of SETA '98, Springer-Verlag, 1999, pp. 1-16. See the constant Q on page 6.

%H Philippe Flajolet and G. Nigel Martin, <a href="http://www.mathcs.emory.edu/~cheung/papers/StreamDB/Probab/1985-Flajolet-Probabilistic-counting.pdf">Probabilistic counting algorithms for data base applications</a>, Journal of Computer and System Sciences. Vol. 31, No. 2, October 1985, p. 193.

%e 0.871157046414893741617857656459191606260392326397524189129...

%t digits = 60; t[n_] := Mod[DigitCount[n, 2, 1], 2]; Clear[p]; p[1] = 5/6; p[k_] := p[k] = Product[(2*n/(2*n+1))^(-1)^t[n-1], {n, 2^(k-1)+1, 2^k}] // N[#, digits + 40]&; pp = Table[Print["k = ", k]; p[k], {k, 1, 23}]; RealDigits[Times @@ pp, 10, digits] // First

%Y Cf. A010060, A086744, A244256, A248342, A248581.

%K nonn,cons

%O 0,1

%A _Jean-François Alcover_, Oct 09 2014

%E Error beginning at the 15th digit detected by _Jon E. Schoenfield_ and corrected by _Jean-François Alcover_, Oct 22 2014

%E More terms from _Jon E. Schoenfield_, Oct 22 2014