login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248484
Number of length n+5 0..3 arrays with some three disjoint pairs in each consecutive six terms having the same sum.
1
724, 844, 988, 1156, 1348, 1564, 1804, 2284, 2860, 3532, 4300, 5164, 6124, 8044, 10348, 13036, 16108, 19564, 23404, 31084, 40300, 51052, 63340, 77164, 92524, 123244, 160108, 203116, 252268, 307564, 369004, 491884, 639340, 811372, 1007980
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 4*a(n-6) - 4*a(n-7).
Empirical g.f.: 4*x*(181 + 30*x + 36*x^2 + 42*x^3 + 48*x^4 + 54*x^5 - 664*x^6) / ((1 - x)*(1 - 2*x^3)*(1 + 2*x^3)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..2....3....3....2....2....2....0....3....2....1....1....2....3....1....2....1
..0....2....3....1....1....0....1....1....3....2....1....3....1....0....3....0
..1....3....1....3....2....3....2....2....2....3....0....1....1....0....1....0
..0....1....1....1....3....3....2....2....1....1....2....2....3....2....1....0
..1....1....3....3....0....0....1....1....3....3....3....1....2....2....0....1
..2....2....1....2....1....1....0....3....1....2....2....0....2....1....2....1
..2....0....3....2....2....2....0....0....2....1....1....2....0....1....2....1
..0....2....3....1....1....0....1....1....0....2....1....0....1....0....3....0
..1....0....1....3....2....3....2....2....2....0....0....1....1....0....1....0
..0....1....1....1....3....3....2....2....1....1....2....2....0....2....1....0
..1....1....3....3....3....0....1....1....0....0....0....1....2....2....0....1
CROSSREFS
Column 3 of A248489.
Sequence in context: A035756 A107552 A232261 * A247894 A023680 A002769
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 07 2014
STATUS
approved