The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A248472 Decimal expansion of C_1 = gamma + log(log(2)) - 2*Ei(-log(2)), one of the Tauberian constants, where Ei is the exponential integral function. 2
 9, 6, 8, 0, 4, 4, 8, 3, 0, 4, 4, 2, 0, 4, 4, 4, 8, 7, 0, 4, 8, 4, 8, 7, 3, 0, 1, 1, 2, 2, 8, 5, 4, 9, 2, 2, 6, 9, 0, 3, 6, 3, 9, 7, 0, 0, 5, 9, 2, 4, 6, 3, 2, 9, 6, 4, 0, 9, 3, 1, 4, 0, 4, 6, 8, 3, 4, 1, 5, 6, 2, 4, 9, 1, 1, 6, 6, 1, 3, 1, 4, 3, 5, 9, 1, 5, 1, 2, 0, 1, 8, 1, 6, 6, 4, 2, 9, 5, 8, 9, 2, 4, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 Steven R. Finch, Tauberian Constants, August 30, 2004 [Cached copy, with permission of the author] Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 68. Eric Weisstein's MathWorld, Exponential Integral FORMULA C_1 also equals gamma + log(log(2)) + 2*Gamma(0, log(2)), where Gamma is the incomplete gamma function. EXAMPLE 0.96804483044204448704848730112285492269036397005924632964... MAPLE evalf(gamma + log(log(2)) - 2*Ei(-log(2)), 120); # Vaclav Kotesovec, Oct 27 2014 MATHEMATICA C1 = EulerGamma + Log[Log[2]] - 2*ExpIntegralEi[-Log[2]]; RealDigits[C1, 10, 103] // First PROG (PARI) Euler + log(log(2)) + 2*eint1(log(2)) \\ Altug Alkan, Sep 05 2018 CROSSREFS Cf. A001620, A074785, A249385. Sequence in context: A011012 A157989 A243265 * A306553 A011194 A235916 Adjacent sequences:  A248469 A248470 A248471 * A248473 A248474 A248475 KEYWORD nonn,cons AUTHOR Jean-François Alcover, Oct 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 23:50 EST 2022. Contains 350504 sequences. (Running on oeis4.)