login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248463
Number of length 2+2 0..n arrays with no three consecutive terms having the sum of any two elements equal to twice the third.
1
10, 36, 148, 380, 862, 1652, 2956, 4860, 7642, 11400, 16488, 23044, 31482, 41952, 54956, 70672, 89662, 112128, 138708, 169632, 205610, 246884, 294240, 347960, 408890, 477324, 554196, 639828, 735214, 840700, 957356, 1085556, 1226442
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) - a(n-3) - 2*a(n-5) + 2*a(n-6) + a(n-8) - 2*a(n-10) + a(n-11).
Empirical for n mod 12 = 0: a(n) = n^4 + n^3 + (25/6)*n^2 - (5/3)*n.
Empirical for n mod 12 = 1: a(n) = n^4 + n^3 + (25/6)*n^2 + (4/3)*n + (5/2).
Empirical for n mod 12 = 2: a(n) = n^4 + n^3 + (25/6)*n^2 - (5/3)*n - (4/3).
Empirical for n mod 12 = 3: a(n) = n^4 + n^3 + (25/6)*n^2 + (4/3)*n - (3/2).
Empirical for n mod 12 = 4: a(n) = n^4 + n^3 + (25/6)*n^2 - (5/3)*n.
Empirical for n mod 12 = 5: a(n) = n^4 + n^3 + (25/6)*n^2 + (4/3)*n + (7/6).
Empirical for n mod 12 = 6: a(n) = n^4 + n^3 + (25/6)*n^2 - (5/3)*n.
Empirical for n mod 12 = 7: a(n) = n^4 + n^3 + (25/6)*n^2 + (4/3)*n - (3/2).
Empirical for n mod 12 = 8: a(n) = n^4 + n^3 + (25/6)*n^2 - (5/3)*n - (4/3).
Empirical for n mod 12 = 9: a(n) = n^4 + n^3 + (25/6)*n^2 + (4/3)*n + (5/2).
Empirical for n mod 12 = 10: a(n) = n^4 + n^3 + (25/6)*n^2 - (5/3)*n.
Empirical for n mod 12 = 11: a(n) = n^4 + n^3 + (25/6)*n^2 + (4/3)*n - (17/6).
Empirical g.f.: 2*x*(5 + 8*x + 38*x^2 + 47*x^3 + 69*x^4 + 48*x^5 + 42*x^6 + 17*x^7 + 14*x^8) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, Nov 08 2018
EXAMPLE
Some solutions for n=6:
..2....1....0....2....3....2....2....4....4....2....1....6....0....4....1....1
..0....4....0....6....2....3....5....4....5....5....0....3....6....6....3....5
..6....4....3....2....0....5....6....1....5....0....1....6....1....1....4....5
..4....1....4....3....6....2....6....0....0....6....1....2....4....2....6....1
CROSSREFS
Row 2 of A248461.
Sequence in context: A051959 A117327 A153371 * A169880 A282554 A240151
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved