login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248441
Number of length n+5 0..1 arrays with no three disjoint pairs in any consecutive six terms having the same sum.
2
42, 62, 92, 136, 200, 292, 422, 612, 900, 1328, 1952, 2856, 4170, 6094, 8926, 13100, 19226, 28172, 41228, 60344, 88390, 129546, 189892, 278260, 407570, 596900, 874350, 1281060, 1877110, 2750284, 4029108, 5902172, 8646250, 12667042, 18558468
OFFSET
1,1
COMMENTS
Column 1 of A248448.
LINKS
FORMULA
Empirical: a(n) = a(n-3) + a(n-4) + a(n-5) + 3*a(n-6) + 2*a(n-7) + a(n-8) - 2*a(n-9) - 3*a(n-10) - 2*a(n-11) - a(n-12) - a(n-13) + a(n-15) + a(n-16).
Empirical g.f.: 2*x*(21 + 31*x + 46*x^2 + 47*x^3 + 48*x^4 + 48*x^5 + 3*x^6 - 43*x^7 - 85*x^8 - 78*x^9 - 44*x^10 - 18*x^11 - 3*x^12 + 19*x^13 + 27*x^14 + 16*x^15) / (1 - x^3 - x^4 - x^5 - 3*x^6 - 2*x^7 - x^8 + 2*x^9 + 3*x^10 + 2*x^11 + x^12 + x^13 - x^15 - x^16). - Colin Barker, Mar 19 2018
EXAMPLE
Some solutions for n=6:
..0....1....1....1....1....0....1....0....0....0....0....1....0....0....1....1
..0....0....0....1....0....1....0....1....1....1....0....1....1....1....1....0
..0....1....1....1....0....0....1....0....0....1....1....0....1....1....1....0
..0....0....0....0....1....0....1....0....0....0....0....1....1....0....1....0
..0....1....0....1....0....0....0....0....0....1....0....1....1....0....0....0
..1....1....0....1....0....0....1....0....1....1....0....1....0....0....1....1
..0....1....1....0....0....1....1....1....0....0....0....1....1....0....1....1
..0....1....0....1....1....0....1....1....1....1....0....0....0....0....1....0
..0....0....0....1....0....0....0....0....0....1....1....0....1....1....1....0
..1....0....1....1....0....0....1....0....0....0....1....1....1....0....1....0
..0....1....0....0....1....1....0....0....0....1....0....1....1....1....0....0
CROSSREFS
Cf. A248448.
Sequence in context: A300680 A053323 A363730 * A119650 A193343 A118074
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 06 2014
STATUS
approved