login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of product_{n>=1} (n/(n+1))^((-1)^t(n)), a probabilistic counting constant, where t(n) = A010060(n) is the Thue-Morse sequence.
2

%I #20 Oct 14 2014 04:23:47

%S 2,3,0,2,5,6,6,1,3,7,1,6,3,6,3,0,5,0,4,2,9,3,5,8,1,2,5,1,2,4,1,8,1,5,

%T 5,9,3,6,4,0,1,2,3,5,9,6,5,0,5,9,1,1,0,1,1,4,6,1,6,7,0,9,0,4,1,3,9,7,

%U 6,6,3,3,9,9,5,0,2,6,2,4,3,2,9,0,9,9,2

%N Decimal expansion of product_{n>=1} (n/(n+1))^((-1)^t(n)), a probabilistic counting constant, where t(n) = A010060(n) is the Thue-Morse sequence.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 6.8 Prouhet-Thue-Morse constant, p. 438.

%H Philippe Flajolet and G. Nigel Martin, <a href="http://www.mathcs.emory.edu/~cheung/papers/StreamDB/Probab/1985-Flajolet-Probabilistic-counting.pdf">Probabilistic counting algorithms for data base applications</a>, Journal of Computer and System Sciences. Vol. 31, No. 2, October 1985, p. 193.

%e 2.302566137163630504293581251241815593640123596505911...

%t digits = 80; t[n_] := Mod[DigitCount[n, 2, 1], 2]; p[k_] := p[k] = Product[(n/(n+1))^((-1)^t[n]), {n, 2^k, 2^(k+1)-1}] // N[#, digits + 20]&; pp = Table[Print["k = ", k]; p[k], {k, 0, 24}]; RealDigits[ Times @@ pp , 10, digits] // First

%Y Cf. A010060, A086744, A244256.

%K nonn,cons

%O 1,1

%A _Jean-François Alcover_, Oct 08 2014

%E A few more digits from _Jon E. Schoenfield_, Oct 13 2014