login
A248326
Square array read by antidiagonals downward: super Patalan numbers of order 5.
3
1, 5, 20, 75, 50, 450, 1375, 500, 750, 10500, 27500, 6875, 5625, 13125, 249375, 577500, 110000, 61875, 78750, 249375, 5985000, 12512500, 1925000, 825000, 721875, 1246875, 4987500, 144637500, 277062500, 35750000, 12375000, 8250000, 9796875, 21375000, 103312500, 3512625000, 6233906250, 692656250
OFFSET
0,2
COMMENTS
Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 5, A025750.
LINKS
Thomas M. Richardson, The Super Patalan Numbers, arXiv:1410.5880 [math.CO], 2014.
Thomas M. Richardson, The Super Patalan Numbers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.3.
FORMULA
a(0,0)=1, a(n,k) = a(n-1,k)*(25*n-5)/(n+k), a(n,k) = a(n,k-1)*(25*k-20)/(n+k).
G.f.: ((x/(1-25*x)^(4/5)+y/(1-25*y)^(1/5))/(x+y-25*x*y).
a(n,k) = (-1)^k*25^(n+k)*binomial(n-1/5,n+k).
EXAMPLE
a(0..4,0..4) is
1 5 75 1375 27500
20 50 500 6875 110000
450 750 5625 61875 825000
10500 13125 78750 721875 8250000
249375 249375 1246875 9796875 97968750
PROG
(PARI) matrix(5, 5, nn, kk, n=nn-1; k=kk-1; (-1)^k*25^(n+k)*binomial(n-1/5, n+k)) \\ Michel Marcus, Oct 09 2014
CROSSREFS
Cf. A068555, A025750, A034688 (first row), A049382 (first column), A248324, A248325, A248328, A248329, A248332.
Sequence in context: A094806 A289596 A026639 * A022633 A092490 A094828
KEYWORD
nonn,easy,tabl
AUTHOR
Tom Richardson, Oct 04 2014
STATUS
approved