Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Nov 11 2024 03:57:02
%S 1,4,12,40,24,168,480,160,224,2464,6240,1440,1120,2464,36960,84864,
%T 14976,8064,9856,29568,561792,1188096,169728,69888,59136,98560,374528,
%U 8614144,16972800,2036736,678912,439296,506880,1070080,4922368,132903936,246105600,25459200,7128576,3734016,3294720,4815360
%N Square array read by antidiagonals downwards: super Patalan numbers of order 4.
%C Generalization of super Catalan numbers of Gessel, A068555, based on Patalan numbers of order 4, A025749.
%H Thomas M. Richardson, <a href="http://arxiv.org/abs/1410.5880">The Super Patalan Numbers</a>, arXiv:1410.5880 [math.CO], 2014.
%H Thomas M. Richardson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Richardson/rich2.html">The Super Patalan Numbers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.3.3.
%F T(0,0)=1, T(n,k) = T(n-1,k)*(16*n-4)/(n+k), T(n,k) = T(n,k-1)*(16*k-12)/(n+k).
%F G.f.: (x/(1-16*x)^(3/4)+y/(1-16*y)^(1/4))/(x+y-16*x*y).
%e T(0..4, 0..4) is:
%e 1 4 40 480 6240
%e 12 24 160 1440 14976
%e 168 224 1120 8064 69888
%e 2464 2464 9856 59136 439296
%e 36960 29568 98560 506880 3294720
%Y Cf. A068555, A025749, A216702 (first column), A034385 (first row), A248324.
%K nonn,tabl,easy
%O 0,2
%A _Tom Richardson_, Oct 04 2014