%I #6 Oct 24 2019 23:02:17
%S 9,2,3,65,7151,80022924,30599691861141025,
%T 941764378394111110366748005603120790,
%U 1207204053149486733914427645845997404101266838687995330054616662472844167
%N Egyptian fraction representation of sqrt(97) (A010548) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 97]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 05 2014