%I #6 Oct 20 2019 12:34:25
%S 4,9,84,11142,474347339,1448582974451426406,
%T 2526762018809024624337804813995389534,
%U 28249016389028465904997590221278194109894254535234000317524709009386354668
%N Egyptian fraction representation of sqrt(17) (A010473) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
%t 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 17]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014