%I #6 Oct 20 2019 12:32:23
%S 3,2,10,181,37860,2063394882,20133724366323386460,
%T 895769948382354175062611801976979893814,
%U 1095684829796116398764171865109547325653507924058299202087102696023776712107256
%N Egyptian fraction representation of sqrt(13) (A010470) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
%t 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 13]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014