%I #6 Oct 20 2019 12:20:35
%S 2,3,9,199,49572,30799364495,1408429952507887000310,
%T 3677260735023142918878205127156519291320765,
%U 102293202370266874495262346614859561910266026424997387777849999466054887759064682698213
%N Egyptian fraction representation of sqrt(6) (A010464) using a greedy function.
%t Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 6]]
%Y Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
%Y Egyptian fraction representations of the cube roots: A129702, A132480-A132574.
%K nonn
%O 0,1
%A _Robert G. Wilson v_, Oct 04 2014